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Abstract

Image denoising is a well studied problem in computer
vision, serving as test tasks for a variety of image modelling
problems. In this project, an extension to traditional deep
CNNs, symmetric gated connections, are added to aid faster
convergence transfer of high level information normally lost
during downsampling. Results show that in under 50,000
training images, gated connections begin to make notice-
able improvements in feature learning and image denois-
ing. An additional classification task shows marginal fea-
ture learning effects when denoising weights are used as
pre-training.

1. Introduction
Image denoising has always been a central problem in

computer vision. At its core, denoising is an inherently ill-
posed problem due to the loss of information during noise
addition.

I ′ = D(I) + h

Here, D(I) is the degrading function with respect to origi-
nal image I while h serves as additive noise. As degradation
functions are not always guaranteed to be affine transforma-
tions, traditional techniques cannot fully recover noised out
pixels of the clean image.

Recently, applications of CNNs in solving this problem
has produced increasingly promising results. Intuitively,
this comes from the change in mindset of recovering infor-
mation from the remnants to learning key features describ-
ing the noisy image and predicting the original from those
traits.

2. Background Literature
Prior to utilization of Deep Neural Nets, one of the

prominent state-of-the-art metrics was the BM3D algo-
rithm.[Dabov et al.] In it, the authors grouped similar 2D
fragments and used inverse 3D transformations to achieve
fine detail denoising. An alternative approach that also

showed good performance was Iterative Regularization [Os-
her et al.], which attempted to reduce noise patterns through
minimizing a standard metric like Bregman Distance.

With the rise of deep learning, one of the earlier works
on applying DNN to an autoencoder for feature denoising,
[Bengio et al.] showed that stacking multilayered neural
networks can result in very robust feature extraction under
heavy noise. A later paper on semantic segmentation, [Long
et al.] shows the power of Fully Connected CNNs in parsing
out feature descriptors for individual entities in images.

Recently, a proposed deep-CNN architecture by [Mao
et al.] features a 30-layer convolutional-deconvolutional
model designed for deep learning of image features. Their
innovation is the inclusion of Symmetric Skip Connections
(SSC) between alternating Conv-Deconv layers. The mod-
ification attempts to solve two problems with training deep
CNNs. First, with increasing number of layers comes the
vanishing gradient problem that prevents effective back-
propagation towards front layers. This is due to the structure
of gradient product at each layer, where error is sequentially
diminished in magnitude. In theory, alternating connections
allow gradients to backpropagate directly from an upsam-
ple, deconvolutional layer to the corresponding downsam-
ple, convolutional layer. Second, as details are inevitably
lost during the downsampling layers, SSC can also serve as
intermediate information flow gates akin to LSTM forget
gates. To prevent massive information leak through these
channels, gate coefficients can be modified during training
to force learning at bottleneck layers.

3. Model Architecture

3.1. Conv-Deconv Stacked Structure

Drawing upon previously proven stacked autoencoder-
decoder networks, this project implements a 10-layer CNN
consisting of 5-Conv layers followed by 5-Deconv layers.
As SSC resulted in faster convergence in the 30 and 20-
layer structures presented in [Mao et al.], this project imple-
ments the inspired extension of Direct Symmetric Connec-
tion (DSC). DSC uses the same setup as SSC, connecting
corresponding Conv to Deconv layers. However, in order
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Figure 1. 10-layer model with DSC

Layer Dimensions Layer Dimensions
Conv-1 64x64x64 Deconv-1 8x8x256
Conv-2 32x32x64 Deconv-2 16x16x128
Conv-3 16x16x128 Deconv-3 32x32x64
Conv-4 8x8x256 Deconv-4 64x64x64
Conv-5 4x4x518 Deconv-5 64x64x3

Table 1. Table of Layers

to further reduce number of weights required in a 10-layer
model and speed up learning, every single Conv layer is
connected to its corresponding Deconv layer, resulting in 4
direct connections.

The main idea during the downsampling layers is for the
network to extract feature descriptors from training data. In
the optimal setting, these weights should dictate a general
representation that can group different types of image ob-
jects and rely those facts to the generative upsampling lay-
ers. Then, the deconv layers can build upon the cleaned,
though bare-boned, feature-dense tensor from the bottle-
neck layer (Conv-5) and generative relevant details to com-
plete a reproduction of the original.

To explain the DSC effects in detail, a typical downsam-
pling layer will conduct the following

Xi = Conv(δ ∗Xi−1,Wi) + bi
Xi =Max(0, Xi)

Here, δ is the Gating Factor, controlling the amount of in-
formation flow to subsequent layers or to corresponding de-
conv layer. Similarly, the deconv layer will have

X ′i = Deconv(X ′i−1 + (1− δ) ∗Xi,W
′
i ) + b′i

X ′i =Max(0, X ′i)

Where X ′ is the deconv layer inputs corresponding in order
to conv layer information flow. In all layers, ReLU is ap-
plied to eliminate negative values. This is due to the RGB
value properties of the input being ranging from 0 to 255,
as well as reducing the effects of low gradients during back-
propagation.

Figure 2. Some example STL-10 images [Coates et al.]

3.2. Loss Function

With the end goal of denoising an image and returning
the same dimensional prediction, the most widely used loss
minimizer is pixel-wise Mean Squared Error.

L =
1

N

N∑
i=1

|X ′5 − Y |2

X0 = N(Y )

For each image in the training set, we apply a combination
of Gaussian Noise and Salt & Pepper Noise. The resulting
”noisy” image, X0, is inputted to Conv-1 for training. The
final denoised product, X ′5, is compared pixel-wise against
the original ground truth, Y . With a proven track record for
effective training, this was the classic loss function used to
compute subsequent results.

An alternative approach of applying Perceptual Loss de-
fined by [Li et al.] of using pre-trained weights to compare
similarity of denoised images was applied with unsuccess-
ful results. Methodology for adapting this approach is de-
scribed below.

4. Data and Training

4.1. STL-10 Dataset

Though denoising training does not require specific la-
belled data due to its input to modified-input minimization
structure, typical of an unsupervised learning problem, sub-
sequent representation learning investigations required la-
belled data and thus restricted dataset choices. Addition-
ally, due to the high quality considerations required of in-
put images for fine grained detail learning, input sizes were
restricted to be at least 64x64x3. Ultimately, the STL-10
dataset was chosen for its relatively large number of unla-
belled, high quality images, 100k in total, as well as it’s
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Figure 3. Perceptual Loss Classification Model

Layer Dimensions
Conv-1 64x64x64
Conv-2 32x32x64
Conv-3 16x16x128
Conv-4 8x8x256
Conv-5 4x4x518

Fully-Connected 1024
Softmax Output 10
Table 2. Perceptual Loss Layers

labelled image section containing 13k images across 10 an-
imal classes.

4.2. Training

Training was done over 3 separate series of related mod-
els: 10-layer with Perceptual Loss, 10-layer with MSE Pixel
Loss, and 10-layer DSC with MSE Pixel Loss. In all three
cases, Stochastic Gradient Descent with minibatching in
Tensorflow was used as the minimizer.

In the first case, Perceptual Loss weights were learned
using 13k labelled images through a 5-layer CNN followed
by a fully-connected layer with drop-out, and then a Soft-
max readout layer over the 10 classes of animals. Min-
imization was through Cross Entropy with true labels as
one-hot vector. Issues with over-fitting were not consid-
ered due to the non-convergence of the network even after
going through all training examples. To calculate similar-
ity between images, both denoised and ground truths are
inputted and stopped after the fully-connected layer. The
1024-dimensional feature descriptors are then used to com-
pute L2 distance as the minimization metric.

L =
∑1024

i=1 FC(X ′)i − Yi

For both the subsequent 10-layer training process, all
100k training data were used, passing in minibatches of 10
images per iteration, resulting in 10k iterations for both. In
the DSC enabled model, Gate Factors for Conv-1 through
Conv-4 are set to 0.1, 0.2, 0.3, 0.4 respectively. The idea is
to allow minute amounts of information to travel between

original noisy image and close to finished, denoised image,
while at the same time allow larger influence to flow be-
tween center bottleneck layers so the middle layer doesn’t
have to necessarily learn all the distinct features for the net-
work to converge.

4.3. Representation Learning

To judge whether the network has learned general repre-
sentation from image denoising, one idea is to test denoising
effects on images with only certain patches blurred out. The
expected result from a convergent system is being able to
distinguish segmentation of entities and generate denoised
pixels fit for those boundaries.

Another investigation conducted after model training
was applying learned weights of the Conv layers as pre-
training initialization to the animal classification task. The
idea is a learnt feature descriptor should contain distinguish-
ing information that cluster different animals on some high
dimensional level in the fully-connected layer. If such a
representation exists, then training using these initialization
on the 13k labelled data should converge much faster than
truncated normal initialization used previously.

5. Results

In training the Perceptual Loss classification network,
13k labelled data images proved insufficient for classifier
to converge under truncated normal initialization.

Figure 4. Accuracy Graph of Truncated Normal Initialization Clas-
sification

Accuracy at the end of 100 iterations averaged around 25
%, better than 10% expected of a random baseline but much
worse than state-of-the-art algorithms. Though disappoint-
ing, weights were acquired and applied to measuring simi-
larities between denoised and true images to train the main
network.

Most likely due to the non-convergent structure of Per-
ceptual Loss metric, main model weights do not appear
to learn or converge. Behavior of the graph over 10000
iterations seems to fluctuate heavily, attempting to fit the
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Figure 5. MSE for training with Perceptual Loss

L2 minimization. As weights on evaluation of testing im-
ages ultimately led to black squares on most denoised out-
puts, subsequent qualitative image results will be products
of MSE pixel-wise training.

In terms of final convergence, both simple 10-layer and
DSC 10-layer ended up not arriving at a stable loss plateau.
In fact, in the case of non-DSC model, MSE loss did not
noticeably drop at all, hinting at lack of training data for
the massive dimensions of parameter weights, as well as
depth of network, to properly propagate error to all layer
elements. However, in the DSC enabled structure, some
noticeable amounts of MSE minimization can be seen after
roughly 5000 iterations, midway through training. Graph
of MSE is presented below, with the first 1000 iterations
omitted due to large range fluctuations several magnitudes
outside pictured bound.

Figure 6. Graph of MSE vs Iteration. Blue is DSC enabled while
red is simple 10-layer

This result does show the promise of gated connections
between downsample and upsample layers, particularly in
equal training data quantities vs traditional, one direction
structures. At 10000 iterations, MSE of DSC structure av-
erages around 7500 while the non DSC network still hovers
around 15000. With these improvements said, features are

Figure 7. Foggy Ship at Sea. From left to right: Noisy, Conv-1
Visualization, Denoised, Clean

Figure 8. Foggy Ship at Sea. From left to right: Noisy, Conv-1
Visualization, Denoised, Clean

clearly still not fully learned by the layer weights as seen in
the ship picture. Conv-1 output in particular seems to not
hold much more than an outline of the red stem along with
a light border for the edge at the bottom. It can be deduced
that most likely the information passage here is still through
the first DSC connecting to Deconv-5, while main informa-
tion flow likely got zeroed out somewhere in the bottleneck
layer.

Next, to look at how well representation has been learned
to distinguish boxed blurs, the following image of bird is
partially noised out. Surprisingly, the output of Conv-1
shows a very good outline of the edges of the bird, though
the patch of noise is also included in the body. One explana-
tion for this sharp contrast as opposed to the ship previously
may be the blurry background in the bird picture along with
the bright color contrast of foreground and background. In
the ship image, both the sky and ship body is white, making
segmentation difficult for the system. On the other hand, the
bird has a bright yellow head with a brown body while the
background is murky gray. These factors, combined with
the fortunate fact the bound patch noise still seems to blend
with the bird’s main body, allows Conv-1 to extract key ob-
ject features.

Figure 9. Partially Blurred-Out image of bird. From left to right:
Noisy, Conv-1 Visualization, Denoised, Clean

Lastly, applying the learned weights of DSC model to
the animal classification problem, we observe a fast con-
vergence in terms of the Cross Entropy loss, unlike that
of the truncated normal initialization previously. In terms
of accuracy, it is observable that initial accuracy is much
higher than normal initialization, with 15% correctly classi-
fied by iteration 20 compared to 5% before. Yet, even with
the fast convergence, accuracy over test label images seems
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Figure 10. Cross Entropy Classification Loss with Pre-trained
weights

Figure 11. Accuracy Graph of DSC Weights Pre-trained Initializa-
tion Classification

to plateau around 35%, much like the non-pretrained classi-
fier. This indicates most likely more data is needed to travel
out of the local optimum, and does not invalidate the effec-
tiveness of pre-trained weights. It is predictable that with
more labelled data, the pre-trained classifier would reach
optimal accuracy faster, due to learned representations of
object segmentation in the weights.

6. Conclusion
In this project, a deep Convolutional-Deconvolutional

model with Direct Symmetric Connections is applied to
solve the classic task of image denoising. Training over
100k unlabelled images, as well as applying subsequent
learned weights to training a classification task over 13k la-
belled images, the DSC included model performed notice-
ably better than traditional downsampling-upsample struc-
tures. Furthermore, representation is learned through un-
supervised training indirectly, as weights when used for
pre-training to a classification task converged significantly
faster than truncated normal initialization. Future work in-
clude examining larger amounts of data for the denoiser to
converge towards a better optimum, as well as finding better
Perceptual Loss metrics for alternative Loss Function train-
ing.
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